Genome-wide Copy Number Profiling on High-density Bacterial Artificial Chromosomes, Single-nucleotide Polymorphisms, and Oligonucleotide Microarrays: A Platform Comparison based on Statistical Power Analysis
نویسندگان
چکیده
Recently, comparative genomic hybridization onto bacterial artificial chromosome (BAC) arrays (array-based comparative genomic hybridization) has proved to be successful for the detection of submicroscopic DNA copy-number variations in health and disease. Technological improvements to achieve a higher resolution have resulted in the generation of additional microarray platforms encompassing larger numbers of shorter DNA targets (oligonucleotides). Here, we present a novel method to estimate the ability of a microarray to detect genomic copy-number variations of different sizes and types (i.e. deletions or duplications). We applied our method, which is based on statistical power analysis, to four widely used high-density genomic microarray platforms. By doing so, we found that the high-density oligonucleotide platforms are superior to the BAC platform for the genome-wide detection of copy-number variations smaller than 1 Mb. The capacity to reliably detect single copy-number variations below 100 kb, however, appeared to be limited for all platforms tested. In addition, our analysis revealed an unexpected platform-dependent difference in sensitivity to detect a single copy-number loss and a single copy-number gain. These analyses provide a first objective insight into the true capacities and limitations of different genomic microarrays to detect and define DNA copy-number variations.
منابع مشابه
I-44: Concurrent Whole-Genome Haplotyping and Copy-Number Profiling of Single Cells
Background Methods for haplotyping and DNA copynumber typing of single cells are paramount for studying genomic heterogeneity and enabling genetic diagnosis. Before analyzing the DNA of a single cell by microarray or next-generation sequencing, a whole-genome amplification (WGA) process is required, but it substantially distorts the frequency and composition of the cell’s alleles. As a conseque...
متن کاملO-38: Concurrent Whole-Genome Haplotyping and Copy-Number Profiling of Single Cells
Background Methods for haplotyping and DNA copynumber typing of single cells are paramount for studying genomic heterogeneity and enabling genetic diagnosis. Before analyzing the DNA of a single cell by microarray or next-generation sequencing, a whole-genome amplification (WGA) process is required, but it substantially distorts the frequency and composition of the cell’s alleles. As a conseque...
متن کاملMethods to detect and analyze copy number variations at the genome-wide and locus-specific levels.
Copy number variations (CNVs) have effects on phenotypes by altering transcription levels of genes and may have major impacts on protein sequence, structure and function. Therefore, CNV screening and analysis focused on the identification of CNV-genetic disease relations are actively progressing. CNVs can be detected and analyzed by various methodologies at the genome-wide and locus-specific le...
متن کاملA robust algorithm for copy number detection using high-density oligonucleotide single nucleotide polymorphism genotyping arrays.
We have developed a robust algorithm for copy number analysis of the human genome using high-density oligonucleotide microarrays containing 116,204 single-nucleotide polymorphisms. The advantages of this algorithm include the improvement of signal-to-noise (S/N) ratios and the use of an optimized reference. The raw S/N ratios were improved by accounting for the length and GC content of the PCR ...
متن کاملGenome-wide detection of human copy number variations using high-density DNA oligonucleotide arrays.
Recent reports indicate that copy number variations (CNVs) within the human genome contribute to nucleotide diversity to a larger extent than single nucleotide polymorphisms (SNPs). In addition, the contribution of CNVs to human disease susceptibility may be greater than previously expected, although a complete understanding of the phenotypic consequences of CNVs is incomplete. We have recently...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 14 شماره
صفحات -
تاریخ انتشار 2007